Search results

1 – 8 of 8
Article
Publication date: 19 October 2023

Monika Lewandowicz-Machnikowska, Tomasz Grzyb, Dariusz Dolinski and Wojciech Kulesza

The purpose of the paper is to investigate how judges and the general population formulate judgments on legal cases, considering both legal and extralegal factors, with a focus on…

Abstract

Purpose

The purpose of the paper is to investigate how judges and the general population formulate judgments on legal cases, considering both legal and extralegal factors, with a focus on the significance of the defendant’s sex.

Design/methodology/approach

The first experiment aimed to determine if non-lawyers’ judgments are affected by the defendant’s sex, using brief excerpts from indictments with the defendant’s sex interchanged. Study 2 aimed to verify if this effect applies to future lawyers, suggesting a peculiar approval granted by men to women displaying illegal sexual behaviour towards young men.

Findings

The findings showed that the sex of the offender only influenced judgments in sexual offences, with male participants being more lenient towards female offenders.

Originality/value

The originality/value of the paper lies in its examination of the influence of the defendant’s sex on judgments made by both judges and the general population, specifically focussing on non-lawyers’ judgments. While previous studies have shown that judges tend to be more lenient towards women in certain cases, this paper adds novelty by investigating whether a similar effect is observed among non-lawyers. Moreover, the research sheds light on the relevance of the defendant's sex in cases of sexual offences and identifies a gender-specific leniency towards female offenders, particularly among male participants. The study also explores how this effect might extend to future lawyers, providing insights into societal attitudes regarding illegal sexual behaviour involving women and young men. Overall, the paper contributes valuable information to the understanding of how sex-based biases can influence legal judgments and decision-making processes.

Details

Journal of Criminal Psychology, vol. 14 no. 2
Type: Research Article
ISSN: 2009-3829

Keywords

Article
Publication date: 1 August 2016

Kazimierz Drabczyk, Edyta Wróbel, Grazyna Kulesza-Matlak, Wojciech Filipowski, Krzysztof Waczynski and Marek Lipinski

The purpose of this study is comparison of the diffusion processes performed using the commercial available dopant paste made by Filmtronics and the original prepared liquid…

Abstract

Purpose

The purpose of this study is comparison of the diffusion processes performed using the commercial available dopant paste made by Filmtronics and the original prepared liquid dopant solution. To decrease prices of industrially produced silicon-based solar cells, the new low-cost production processes are necessary. The main components of most popular silicon solar cells are with diffused emitter layer, passivation, anti-reflective layers and metal electrodes. This type of cells is prepared usually using phosphorus oxychloride diffusion source and metal pastes for screen printing. The diffusion process in diffusion furnace with quartz tube is slow, complicated and requires expensive equipment. The alternative for this technology is very fast in-line processing using the belt furnaces as an equipment. This approach requires different dopant sources.

Design/methodology/approach

In this work, the diffusion processes were made for two different types of dopant sources. The first one was the commercial available dopant paste from Filmtronics and the second one was the original prepared liquid dopant solution. The investigation was focused on dopant sources fabrication and diffusion processes. The doping solution was made in two stages. In the first stage, a base solution (without dopants) was made: dropwise deionized (DI) water and ethyl alcohol were added to a solution consisting of tetraethoxysilane (TEOS) and 99.8 per cent ethyl alcohol. Next, to the base solution, orthophosphoric acid dissolved in ethyl alcohol was added.

Findings

Diffused emitter layers with sheet resistance around 60 Ω/sq were produced on solar grade monocrystalline silicon wafers using two types of dopant sources.

Originality/value

In this work, the diffusion processes were made for two different types of dopant sources. The first one was the commercial available dopant paste from Filmtronics and the second one was the original prepared liquid dopant solution.

Details

Microelectronics International, vol. 33 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 7 August 2017

Wojciech Filipowski, Edyta Wrobel, Kazimierz Drabczyk, Krzysztof Waczynski, Grazyna Kulesza-Matlak and Marek Lipinski

The main aim of this study was a preparation development of dopant solution (DS) which can be deposited by a spray-on method and subsequently allows obtaining the n+ emitter layer…

Abstract

Purpose

The main aim of this study was a preparation development of dopant solution (DS) which can be deposited by a spray-on method and subsequently allows obtaining the n+ emitter layer with surface resistance in the range of 65-80 Ω−1. The intention of chosen spray-on method was to gain a cheaper way of dopant source deposition, compared to the commonly used methods, which is of particular importance for the new low-cost production processes.

Design/methodology/approach

This paper presents the sequence in producing a spray-on glass solution (DS) with very high concentration of phosphorus, which allows to perform diffusion doping at relatively low temperatures. DS contained deionized water, ethyl alcohol, tetraethoxysilane and othophosphoric acid.

Findings

The sequence in producing a DS was performed with respect to enabling the application to silicon wafers by spray-on method. Furthermore, the equations defined density and viscosity of DS in term of storage time were referred to determine the possibility of applying this solution by spray-on method. Besides, the dependence of the emitter surface resistance on the doping (diffusion) time was determined. Accordingly, optimal process conditions were specified.

Originality/value

The paper presents a new, so far unpublished composition of DS with very high concentration of phosphorus, which can be applied using a spray-on method. Moreover, original are also investigations respecting some properties of obtained DS relative to storage time.

Details

Microelectronics International, vol. 34 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 24 October 2022

Wojciech Filipowski

The purpose of this paper is to develop a model that allows determining the boron concentration profile in silicon based on duration and temperature of the diffusion process.

Abstract

Purpose

The purpose of this paper is to develop a model that allows determining the boron concentration profile in silicon based on duration and temperature of the diffusion process.

Design/methodology/approach

The model was developed on the basis of the Fick’s second law, which is fundamental for describing the diffusion process. The explicit scheme of the finite difference method was used in the conducted simulations. Results of measurements made using the secondary ion mass spectrometry (SIMS) were used as template dopant concentration profiles. Solution of boric acid in ethanol is the dopant source for which this model was developed.

Findings

Based on the conducted simulations, it was proposed that besides the influence of electric field of ionized dopants, which is already described in literature, an appropriate factor reflecting the influence of the threshold concentration on the coefficient of diffusion of boron in silicone should also be introduced.

Originality/value

The developed model enables determination of the boron concentration profile in silicon consistent with the results of SIMS measurements. A factor taking into account the influence of threshold concentration on the coefficient of diffusion was introduced. The influence of concentration of boric acid in the dopant solution on the concentration profile was also considered.

Details

Microelectronics International, vol. 40 no. 4
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 2 July 2018

Wojciech Filipowski, Kazimierz Drabczyk, Edyta Wróbel, Piotr Sobik, Krzysztof Waczynski and Natalia Waczynska-Niemiec

The purpose of this paper is to develop a method of preparing spray-on dopant solutions that enable obtaining a p+ region forming a back-surface field (BSF) during the diffusion…

Abstract

Purpose

The purpose of this paper is to develop a method of preparing spray-on dopant solutions that enable obtaining a p+ region forming a back-surface field (BSF) during the diffusion doping process. The spray-on method used allows to decrease the costs of dopant solution application, which is particularly significant for new low-cost production processes.

Design/methodology/approach

This paper presents steps of production of high concentration boron dopant solutions enabling diffusion doping of crystalline p-type silicon surfaces. To check the fabricated dopant solutions for stability and suitability for spray-on application, their viscosity and density were measured in week-long intervals. The dopant solutions described in this paper were used in a series of diffusion doping processes to confirm their suitability for BSF production.

Findings

A method of preparing dopant solutions with parameters enabling depositing them on silicon wafers by the spray-on method has been established. Due to hygroscopic properties of the researched dopant solutions, a maximum surrounding atmosphere humidity has been established. The solutions should not be applied by the spray-on method, if this humidity value is exceeded. The conducted derivatographic examination enabled establishing optimal drying conditions.

Originality/value

The paper presents a new composition of a dopant solution which contains high concentration of boron and may be applied by the spray-on method. Derivatographic examination results, as well as equations describing the relation between dopant solution density and viscosity and storage time are also original for this research. The established dependencies between the sheet resistance of the fabricated BSF and the diffusion doping time are other new elements described in the paper.

Details

Microelectronics International, vol. 35 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 January 1984

G. Kersuzan, Nigel Batt, Brian Waterfield, Hamish Law, B. Herod, M.A. Whiteside and Nihal Sinnadurai

The International Electronic Components Show in Paris in November, 1983, provided the occasion for a very successful meeting of ISHM‐France which attracted 170 attendees. The…

Abstract

The International Electronic Components Show in Paris in November, 1983, provided the occasion for a very successful meeting of ISHM‐France which attracted 170 attendees. The following presentations were given:

Details

Microelectronics International, vol. 1 no. 4
Type: Research Article
ISSN: 1356-5362

Article
Publication date: 20 June 2019

Wojciech Filipowski

The purpose of this paper was the development of a model enabling precise determination of phosphorus concentration profile in the emitter layer of a silicon solar cell on the…

Abstract

Purpose

The purpose of this paper was the development of a model enabling precise determination of phosphorus concentration profile in the emitter layer of a silicon solar cell on the basis of diffusion doping process duration and temperature. Fick’s second law, which is fundamental for describing the diffusion process, was assumed as the basis for the model.

Design/methodology/approach

To establish a theoretical model of the process of phosphorus diffusion in silicon, real concentration profiles measured using the secondary ion mass spectrometry (SIMS) method were used. Samples with the phosphorus dopant source applied onto monocrystalline silicon surface were placed in the heat zone of the open quartz tube furnace, where the diffusion process took place in the temperature of 880°C-940°C. The measured real concentration profiles of these samples became template profiles for the model in development.

Findings

The model was developed based on phenomena described in the literature, such as the influence of the electric field of dopant ionized atoms and the influence of dopant atom concentration nearing the maximum concentration on the value of diffusion coefficient. It was proposed to divide the diffusion area into low and high dopant concentration region.

Originality/value

A model has been established which enabled obtaining a high level of consistency between the phosphorus concentration profile developed theoretically and the real profile measured using the SIMS method. A coefficient of diffusion of phosphorus in silicon dependent on dopant concentration was calculated. Additionally, a function describing the boundary between the low and high dopant concentration regions was determined.

Details

Microelectronics International, vol. 36 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 7 August 2017

Wojciech Filipowski, Zbigniew Pruszowski, Krzysztof Waczynski, Piotr Kowalik and Jan Kulawik

The paper aims to present a research on the impact of the stabilization process of a thin metallic layer (Ni-P) produced on a ceramic surface (Al2O3) by means of electroless…

Abstract

Purpose

The paper aims to present a research on the impact of the stabilization process of a thin metallic layer (Ni-P) produced on a ceramic surface (Al2O3) by means of electroless metallization on its electric parameters and structure. On the basis of the research conducted, the existence of a relationship between resistance (R) and the temperature coefficient of resistance (TCR) of the test structure with a Ni-P alloy-based layer and the temperature of stabilization was proposed.

Design/methodology/approach

Metallic Ni-P layers were deposited on sensitized and activated substrates. Metallization was conducted in an aqueous solution containing two primary ingredients: sodium hypophosphite and nickel chloride. The concentration of both ingredients was (50-70) g/dm3. The process lasted 60 min, and the metallization bath pH was kept at 2.1-2.2, whereas the temperature was maintained at 363 K. The thermal stabilization process was conducted in different temperatures between 453 and 623 K. After the technological processes, the resistance and TCR of the test structures were measured with a micro ohmmeter. The composition and the morphology of the resistive layer of the structures examined was also determined.

Findings

The dependence of the resistance on the temperature of the stabilization process for the temperature range 553 to 623 K was described using mathematical relationships. The TCR of test resistors at the same thermal stabilization temperature range was also described using a mathematical equation. The measurements show that the resistive layer contains 82.01 at.% of nickel (Ni) and 17.99 at.% of phosphorus (P).

Originality/value

The results associate a surface morphology Ni-P alloy with the resistance and TCR according to temperature stabilization. The paper presents mathematical relationships that have not been described in the literature available.

Details

Microelectronics International, vol. 34 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

1 – 8 of 8